The relationship between gastric emptying of semisolids and paracetamol absorption

O. U. PETRING¹, B. ADELHØJ, M. IBSEN² & H. E. POULSEN²
Department of Clinical Physiolog and Nuclear Medicine³ and Medical Department A², Rigshospitalet, Copenhagen 0, DK-2100 Denmark

1 The relationship between gastric emptying rate of semisolid Tc-99m labelled Chelex-100 resin/oatmeal and paracetamol absorption was determined simultaneously in seven healthy volunteers.
2 There was no significant correlation between the half-time of gastric emptying and the time of the peak serum paracetamol concentration.
3 There was no significant correlation between the area under the serum paracetamol concentrations at 60 and 90 min and the % meal emptied in 60 and 90 min respectively.
4 Three subjects showed a lag phase in gastric emptying pattern, while the other four showed the emptying curves without evidence of a delayed phase of emptying.
5 Individual values of gastric emptying determined by the methods varied widely.

Keywords gastric emptying paracetamol absorption semisolids radionuclides

Introduction

Gastric emptying of solids and liquids is dependent on motor function of different portions of the stomach (Minami & McCallum, 1984). Several techniques have been described using two radionuclides to measure liquid and solid emptying simultaneously (Heading et al., 1976; Christian et al., 1980). However, the use of multiple radionuclide markers and labelling of a solid phase is a cumbersome procedure (Meyer et al., 1976). Frequently, liquids are used as test meal, although complaints of gastric retention when present, occurs when solids are consumed, and symptoms of dumping occur mostly when semisolids are taken (Jacobs et al., 1982).

In this study we have used Tc-99m-labelled Chelex-100 resin mixed with oatmeal to study the gastric emptying of semisolids. This conveniently prepared Tc-99m-Chelex-100 resin has been shown to have excellent in vitro and in vivo stability with t½ of emptying in normal subjects similar to that observed for other small, solid test meals (Wirth et al., 1983). The rate of paracetamol absorption has been demonstrated to reflect the rate of gastric emptying of the liquid phase, when compared with In-113m DTPA chelate scintiscanning studies (Heading et al., 1973; Clements et al., 1978). In the present study the relationship between gastric emptying rate of semisolids and absorption of paracetamol and Tc-99m Chelex-100 resin/oatmeal mixed in powder form was studied in normal volunteers under standard conditions.

Methods

Seven healthy volunteers, four women and three men (age 25–39 years, body weight 45–85 kg) were the subjects. The study was approved by the local ethics committee and informed consent was given by all subjects.

After an overnight fast, the subjects sat while eating 30 g instant oatmeal, 5 g sugar, 100 ml of cold milk and paracetamol powder 20 mg kg⁻¹

Correspondence: Dr O. Petring, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen 0, DK-2100 Denmark
uniformly mixed with 37 MBq of Tc-99m Chelex-100 resin. Starting 5 min after the test meal, with
the subjects in supine position, the gastric emptying study was performed in the anterior projection
using a gammacamera (Maxi 400 T, G.E.) with low-energy parallel-hole collimator on line to
computer system (gamma 11, D.E.C., Maynard,
M.A.). Successive 60 s images were obtained over a 90 min period. The quantitative examina-
tion of emptying was based on a series of 5 min images. In three subjects images of the stomach
area were accumulated alternately from the an-
terior and the posterior aspects of the body. Assuming that the 1 min delay between the an-
terior and posterior recording was not believed to introduce any significant error in the calcula-
tions, the geometric mean of the anterior and posterior counts (the square root of the product)
was then calculated.

The stomach was outlined using an irregular
region of interest and the activity curve from
this region was calculated over the period of the
study after correction for decay of the 99m-
technetium marker. Isotope counts, were ex-
pressed as percentage of meal emptied from
stomach in 60 (E60) and 90 min (E90), gastric
emptying half time (E1/2) and duration of the lag
period. Time 0 was taken as the time of the first
count, immediately after meal ingestion. On
the same occasion venous blood samples were taken
from an indwelling cannula before and with 15
min intervals after the end of ‘the meal’ ingestion.
Serum was separated and stored at −20°C
until measurement of serum paracetamol con-
centration was performed by high performance
liquid chromatography (Knox & Jurand, 1978).

Statistics

The relationships were assessed by Spearman’s
rank correlation coefficient.

Table 1 The individual values of the peak serum paracetamol concentration (Cmax), the time from administra-
tion of paracetamol to its peak concentration (tmax), the area under serum paracetamol concentration-time curve
from 0–60 min (AUC60), the area under serum paracetamol concentration-time curve from 0–90 min (AUC90),
% of meal emptied from stomach at 60 min (E60), % of meal emptied from stomach at 90 min (E90), gastric
emptying half time (E1/2) and duration of lag period (Lag)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cmax (μg ml⁻¹)</th>
<th>tmax (min)</th>
<th>AUC60 (μg ml⁻¹ min)</th>
<th>AUC90 (μg ml⁻¹ min)</th>
<th>E60 (%)</th>
<th>E90 (%)</th>
<th>E1/2 (min)</th>
<th>Lag (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.7</td>
<td>30</td>
<td>722</td>
<td>1098</td>
<td>40</td>
<td>57</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>11.8</td>
<td>15</td>
<td>554</td>
<td>857</td>
<td>30</td>
<td>61</td>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>9.2</td>
<td>75</td>
<td>355</td>
<td>624</td>
<td>50</td>
<td>72</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>16.8</td>
<td>15</td>
<td>722</td>
<td>1147</td>
<td>22</td>
<td>35</td>
<td>105</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>11.8</td>
<td>150</td>
<td>319</td>
<td>611</td>
<td>16</td>
<td>31</td>
<td>135</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>8.6</td>
<td>75</td>
<td>375</td>
<td>629</td>
<td>16</td>
<td>17</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>14.1</td>
<td>60</td>
<td>414</td>
<td>1042</td>
<td>21</td>
<td>39</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td>12.6</td>
<td>60</td>
<td>494</td>
<td>858</td>
<td>28</td>
<td>45</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>1 s.e. mean</td>
<td>1.2</td>
<td>17.9</td>
<td>65</td>
<td>90</td>
<td>4.9</td>
<td>7.3</td>
<td>13.1</td>
<td></td>
</tr>
</tbody>
</table>
geometric mean values. The anterior detector alone did not underestimate the emptying rate determined by geometric mean by more than 9%.

Three of seven subjects showed an early delay, or ‘lag’ phase in gastric emptying pattern determined by anterior detection. In two subjects this existence of the lag phase was further classified by the filling curve of the intestine and by geometric mean correction. The other four subjects showed the emptying curves closely conformed to a linear fit, without evidence of a lag phase before emptying.

Discussion

The absorption rate of many drugs has been shown to depend on gastric emptying rate. In particular it is assumed that the absorption of orally administered paracetamol reflects the gastric emptying rate since it is absorbed rapidly from the upper small bowel. Simultaneous measurement of serum paracetamol concentration, the time to reach maximum paracetamol concentration, the area under the serum paracetamol concentration curve at 60 min and gastric emptying rate determined with radionuclide markers have confirmed measurements of the rate of paracetamol administered orally as a reliable expression of liquid phase gastric emptying (Heading et al., 1973; Clements et al., 1978). However, our data suggest no such relationship between paracetamol absorption and scintigraphic measurement of gastric emptying of semisolids.

In this study Tc-99m-labelled polystyrene resin was incorporated into a palatable, small semi-
solid test meal. Heading et al. (1973) used a semisolid test meal labelled with In-113m di-
ethylenetriaminepenta-acetic acid chelate, which is a liquid marker. Liquid and solid phase empty at different rates and patterns (Minami & McCallum, 1984; Moore et al., 1985) and patients may demonstrate normal emptying of liquid while actually retaining the solids abnormally with symptoms of gastric retention (Mannell & Esser, 1984). Only rarely complaints occur after drinking liquids (Jacobs et al., 1982).

The emptying of the semisolid test meal in our study was found to be a linear process, similar to the solid phase gastric emptying pattern. The nuclide marker was apparently emptying along with the solid phase, while paracetamol is known to follow the liquid phase (Heading et al., 1973; Clements et al., 1978).

In this concept paracetamol seems to represent the function of proximal stomach which controls the gastric emptying of liquids, while the gastric emptying of semisolid reflects more the distal part of stomach responsible for reducing solids to the form required for emptying (Minami & McCallum, 1984). Food eaten as solids, leaves the stomach more slowly than the liquid portion of a meal (Malmud et al., 1982).

After meal consumption, food material moves anteriorly decreasing tissue attenuation. It has long been known that the geometric mean of counts from opposing views is insensitive to changing source depth (Tothill et al., 1978). The geometric mean can be determined from anterior and posterior computer images of the stomach (Christian et al., 1980). This correction seems to be important for precise quantification of gastric emptying rates in studies using large meals and in obese patients (Christian et al., 1983). Using anterior detection alone, over-estimation of the half emptying time is proportional to the size of the meal: with a 300 g meal the error is approximately 10% (Man nell & Esser, 1984; Christian et al., 1980). In this study a meal of approximately 115 ml was used and this error was maximum 9% at 75 min, when corrected by geometric mean as employed by Moore et al. (1985). Thus, it was assumed that the more convenient and easier method using single anterior detection with correction for decay was optimal in our study. Similar approximation has previously been used in several clinical studies (Jacobs et al., 1982; Malmud et al., 1982; Sheiner et al., 1980).

It has been postulated that the period of an early delay or lag period in gastric emptying pattern is a measurement artefact, as it has been shown that gastric emptying begins as soon as food reaches the stomach (Mannell & Esser, 1984; Christian et al., 1983) and only represents
movement of the labelled meal from the posterior to the anterior part of the stomach where the effect to attenuation is less in relation to the fixed anterior detector (Christian et al., 1980, 1983). There is, however, in the literature a diversity in opinion about the existence of a lag phase (Jacobs et al., 1982; Moore et al., 1985; Tothill et al., 1978).

The gastric emptying patterns of semisolids in our study showed that the subjects could be divided in two subgroups. One without evidence of a lag period and the other with a lag pattern. The emptying patterns of the two subgroups differed only in the existence of the lag phase, whereas the emptying rates were similar. There was no significant difference in sex, weight or E_{15} between the subgroups and all volunteers were without symptoms or history of gastric/intestinal disease. Since some variation in gastric emptying has been shown due to posture and gravidity (Tothill et al., 1978, 1980) a standard supine position was maintained during the study. We suggest that the explanation could be e.g. different mastication habits or different ability of adequately filling the gastric antrum (Sheiner et al., 1980) or even psychological reaction to the study. However, only assessment of much larger number of subjects will allow recognition of subgroups according to gastric emptying pattern.

Provided the limitations of anterior detection alone, gastric emptying studies of semisolids provides different information than liquid emptying test alone and will suffice for most clinical studies where differences in emptying rates between groups are sought.

References

(Received 10 March 1986, accepted 23 July 1986)